The generator matrix 1 0 0 1 1 1 2 1 1 2 1 1 0 X^2 1 1 1 1 X^2+X+2 X X+2 1 1 1 1 X X^2+X+2 X^2 2 1 1 X^2+X+2 1 1 1 X^2 2 1 X^2+X 1 1 1 1 1 1 1 X^2+X+2 1 1 X 1 X^2 1 X^2+X+2 1 1 1 0 1 0 2 X^2+1 X^2+3 1 0 X^2+1 1 2 X^2+3 1 X X+2 X X^2+X+3 X^2+X+1 X^2+2 1 1 X+3 X^2+X+2 X+1 X^2+X X^2+X 1 X^2 1 X+1 0 1 X^2+X+3 1 3 1 1 X^2+2 1 X X^2 2 X+2 1 X^2+X X^2+X+2 1 X^2+X X^2 X+2 X+3 0 1 1 X^2+X+3 X^2 X^2+2 0 0 1 X+3 X+1 2 X^2+X+1 X^2+X X^2+1 3 X^2+3 X^2+X+2 X^2+X+2 1 X+2 X^2+3 X+1 X 1 X^2+X+1 X 2 X+3 1 X^2 1 X+1 1 X+3 X^2+X+1 X^2+X+3 X^2+2 2 X^2+2 X^2+1 1 X^2 X^2+X+3 3 X+1 X^2+2 1 X^2+X+1 X 0 X+2 0 1 X+3 1 X 1 X+3 X^2+X X^2 1 3 generates a code of length 57 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 54. Homogenous weight enumerator: w(x)=1x^0+668x^54+552x^55+951x^56+528x^57+388x^58+248x^59+328x^60+128x^61+200x^62+16x^63+84x^64+2x^68+2x^72 The gray image is a code over GF(2) with n=456, k=12 and d=216. This code was found by Heurico 1.16 in 69.5 seconds.